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Squig Sheets and Some Other Squig 
Fractal Constructions i 

Benoit B. Mandelbrot 2 

Squig intervals are a class of hierarchically constructed fractals introduced by 
the author. They can be visualized as the final outcome upon a straight interval 
of a suitable cascade of local perturbative "eddies" ruled by two processes 
called decimation and separation. Their theory is summarized and their scope is 
extended in several new directions, especially by introducing new forms of 
separation. Squig intervals are generalized in two dimensions, with fractal 
dimensions ranging from 1.2886 to 1.589. Squig sheets are constructed in three- 
dimensional space with fractal dimensions ranging from 8/3 up. They should 
prove useful in modeling the fractal surfaces associated with turbulence and 
related phenomena. Squig intervals are constructed in three dimensions. 
Nonsymmetric "eddies" and the resulting squigs are tackled. Squig trees and 
intervals are drawn on unconventional lattices, either in the plane or in a 
prescribed fractal surface. Peyri~re's M systems are mentioned: their study 
includes the proof that the informal "renormalization" argument (involving a 
transfer matrix) is exact for squigs. 
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1.3. INTRODUCTION 

Squigs  a re  a f a m i l y  o f  r a n d o m  f r ac t a l s  t h a t  I c o n c e i v e d  o f  in  1978~1~; the  

t h e o r y  o f  squ ig  in te rva l s ,  w h i c h  a re  s e l f - avo id ing  squ ig  cu rves  in  the  p lane ,  is 

s k e t c h e d  in C h a p t e r  24  o f  m y  1982  b o o k  ~2) (see f o o t n o t e  3), to  be  r e fe r red  to 

Presented at the Third Conference on Fractals: Fractals in the Physical Sciences, held at the 
National Bureau of Standards, Gaithersburg, Maryland, on November 20-23, 1983. 

2 IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. 
3 The reader's attention should be drawn to the fact that the second and later printings of this 

book include an update chapter and additional references. Though it should not have been 
necessary, it may be useful also to mention here that most of the material in this book that 
concerns physics, e.g., polymers and percolation clusters, was not found in either of my two 
earlier Essays on fractals, Les objects fractals: forme, hasard et dimension (Flammarion, 
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as F G N .  There is a growing l i terature on the squigs'  geometry,  their physics,  
and their appl icat ions,  tl-9~ The purpose  of  the present paper  is to generalize 
an essential ingredient  of  the construct ion of  squig curves in the plane, the 
not ion of  separat ion,  and to introduce and investigate squig curves and 

sheets in spaces of  more  than two dimensions,  and in unconvent ional  
underlying lattices. 

These examples  are not meant  to be exhaustive,  but  to demonst ra te  the 
versat i l i ty  of  the concept  of  squig. Many  other examples  come to mind, and 
squigs can be expected to become widely used on a substi tute to the Koch  
curves, which had been vital to the ear ly his tory of  fractal  geometry and of  
its appl icat ions.  

The present  paper  can be viewed as a direct  cont inuat ion of  par t  I of  my 
Edingburgh StatPhys 15 presentat ion.  ~3~ This is why this paper ' s  section 
numbers start  with 1.3 and continue after those of  Ref. 3. However ,  this is a 
free-standing paper ,  the bas ic  problems,  definitions, and procedures  are 
restated in detail ,  and figures are inserted. In fact, it may  be easier to study 
par t  I of  Ref. 3 after the present  work. 4 

The techniques used in this paper  are (without this having been 
intended) examples  of  renormal iza t ion  analysis ,  and obta in  the fractal  
d imensional i ty  via the averaged transfer  matr ix  of  these fractals  (TMF) .  ~1~ 
J. Peyri~re ~7) has showed the results to be mathemat ica l ly  exact  under wide 
condit ions of  val idi ty;  his analysis  is not very accessible,  but  he has verified 
(private communica t ion)  that  the results in Ref. 3 and in the present  paper  
are exact. In par t icular ,  he has proved that  a squig's Hausdor f f -Bes icovi tch  
d imensional i ty  coincides with the fractal  d imensional i ty ,  derived by transfer  
matr ix  methods.  5 

Paris, 1975), and Fractals: Form, Chance and Dimension (W. H. Freeman, San Francisco, 
1977). 

4 Part II of this Edinburgh paper is amplified in a Comment in J. Star. Phys., this issue. 
5 The full treatment (Ref. 7b) is lengthy and solely addressed to mathematicians. I hope that 

Peyri6re will soon provide an English summary for physicists and general readers. His 
report, titled "Mandelbrot random bead strings and birth processes with interaction," dated 
1978, is no longer available. 

6 A variant of the simplest squig was devised in an 1983 paper by D. J. Klein and W. A. Seitz 
(Ref. 8). The list of possible configurations is the same as in my 1978 construction as shown 
in Fig. 2. However, they are assigned a different set of probabilities. My model distinguishes 
the four configurations in Fig. 1, and gives each a probability equal to 1/4. Klein and Seitz 
identify configurations 2 and 3, and give each of their three distinct configurations a 
probability equal to 1/3. A priori, there was no imperative reason to prefer one probability 
assignment to the other. A posteriori, however, the renormalization analysis that Klein and 
Seitz require turns out to be lengthy, while only approximate, and it does not yield D itself 
only the bound D ~< 1/.834499 = 1.1983, which is very undesirably far from F|ory's value 
4/3. 
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Nomenclature. As recommended in Ref. 3, the term "Hausdorff-  
Besicovitch dimensionality" is now reserved to cases where the algorithm 
due to Hausdorff and Besicovitch was actually implemented. This algorithm 
is of wide applicability but difficult. The generic notion which it is meant to 
measure is now denoted as "fractal dimensionality." F G N  followed a less 
formal course, and Hausdorff-Besicoviteh and fractal were often made 
synonymous. This old informality has now become untenable. For other 
reasons why fractal has broken off from Hausdorff-Besicoviteh, see Ref. 3, 
Section 2. 

1.3.1. Historical Development of the Notion of Fractal Squig, from 
Intervals, to Trees Imbedded in a Given Surface, to Clusters, and 
on to Sheets and Beyond 

The earliest squigs were "intervals" and "trees" in triangular lattices of 
base b---2, whose construction is recalled again in Section 1.3.3. They were 
meant, respectively, to be models of linear polymers and of river networks. 
The match proves surprisingly excellent. In particular, the fractal dimen- 
sionality D is close to the dimensionality 4/3 that is known to characterize 
the self-avoiding random walk. This value is also excellent to describe linear 
polymers. Squigs were intended to be non-self-intersecting, and the proof that 
this intent was fulfilled is found in Ref. 9, p. 384. (Aside: D = 4/3 is also not 
unreasonable for r ivers-- though on the high side. In addition, squig trees of 
base b = 2 satisfy Horton's law, which is an important fact about rivers, but 
on which we cannot dwell here.) 

Many fractal curves, e.g., the simple Koch snowflake, can be thought of 
as the final outcome of the action upon a straight interval of a hierarchical 
cascade of random "eddies" of decreasing size. In the case of squigs, the 
underlying process bears some resemblance to a physical vortex through a 
fluid. As is well known, it follows from the equations of motion that in time 
a fluid vortex becomes increasingly thin and long, hence very convoluted. In 
the squig constructions, we imagine that this process occurs via a random 
hierarchy of eddies: each stage starts with the effects of larger eddies; it only 
adds detail. The squig construction also postulates that at each stage the 
vortex is of uniform thickness. 

It will be seen that, on triangular planar lattices of base b = 2, the 
construction of squig trees and intervals involves a single operation, called 
"decimation." On other lattices, however, e.g., on square planar lattices of 
base b = 2, a second operation is needed, which can take several forms but 
will always be called "separation". "Bond separation" is the original method 
used in Refs. 1, 2, 3, 7, and 9. "Site separation" was briefly mentioned in 
Ref. 6, and will now be "retrofitted" to generate alternative squigs on a 
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square lattice of base b = 2. Further forms of separation are studied here for 
the first time. 

After the trees and the intervals, attention moved on to squig clusters, 
which are a new family of random fractals, first described in the Edingburgh 
paper, ~3) and devised to match the properties of the two-dimensional 
percolation clusters at criticality. Again, as seen in Section 1.1 of the Edin- 
burgh paper and in Ref. 5, the match proves surprisingly excellent. It extends 
to the fractal dimensionalities of the whole cluster and of every one of its 
parts that was studied. The branching properties also match. The order of 
ramification is designed to be finite but >2, and the dimensionality of 
r e c u r r e n c e  Drecurrence is found to be ~1/3,  hence the fraction/spectral dimen- 
s iona l i ty  Dfracto n = 2 ( 1 -  Orecurrence ) is ~4/3. This value is worth noting 
because Drecurre,ce is an intrinsic summary of the practically useful 
branching characteristics, and because for most nonrandom fractals, 
Drecurrence differs from 1/3. In addition, Ref. 5 describes some variants of the 
squig clusters: partly random clusters (based on nonrandom decimation and 
random bond separation) and nonrandom clusters (based on nonrandom 
decimation and introducing site separation is a nonrandom form). 

Now that the Sierpinski gasket has yielded many of its secrets, and has 
shown its limitations, squigs should find many uses in physics. To help 
along, several further squigs are described in the present paper. Most novel 
and especially promising are squig "sheets" (Section 1.5.1) on a cubic lattice. 
Intuitively, they are the ultimate effects upon a square of a suitable 
hierarchical cascade of eddy perturbations in space. They are offered as 
possible models of interfaces in chemistry or in the study of turbulence. 

1.3.2.  Perspective: Physics in a Continuum or on a Lattice, and 
Hierarchical Physics on a Pertiling Lattice 

To motivate interest in squigs, they should be placed in perspective, and 
in particular should be compared to earlier models for the same phenomena. 
Natural space is continuous, but much of statistical physics is carried out on 
a lattice, as exemplified by the self-avoiding walk model of real linear 
polymers or to the Broadbent-Hammersley model of real percolation. Still, 
the lattice model are hard mathematically and hard to simulate on the 
computer. Hierarchical models are well known to be far easier to work with. 
One hopes that they are equally (or near equally) acceptable as models of 
what really happens in real space. 

Squig fractals are hierarchical. They can be drawn either by 
extrapolation or by interpolation. Since the results are equivalent, this paper 
describes each individual case via the process that comes most easily. In 
terms of extrapolation, recursivity is built into the squig construction by 
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starting with a lattice whose cells collect in supercells which are up-sized 
versions of the cells. In terms of interpolation, the basic ingredient of the 
squig construction is a tiling in which each tile is covered ad infinitum by 
smaller tiles similar to the original one. Different subtiles of the same tile 
need not be of the same size. Tiles may be squares, triangles, etc., but may 
also be bounded by fractal surves (Section 1.7). In the terminology of FGN,  
they form a pertiling. The Latin prefix "per" means "thoroughly"; e.g., 
"perfect" originally meant "done thoroughly," "perforation" is a "hole 
through." 

Squigs are not drawn on the sides of the cells, but on the dual lattice of 
"potential bonds," obtained by linking the centers of original cells that share 
a side. For example, when the lattice is triangular or square, these bonds 
form a hexagonal or square lattice. Some bonds are then deleted at random, 
in recursive fashion, using "decimation" and "separation." The remaining 
bonds are called "activated." The construction is tractable because the 
processes of decimation and separation are either nonrandom, or random but 
statistically independent. 

1.3.3. Background: Triangular Lattice of Base b = 2, and the Process of 
Pure Decimation. The Prototypical Plane-Filling Squig Tree 

Let us use the extrapolative construction. The first stage takes b 2 
triangular lattice cells C(0) that fit into a twice larger triangle C(1), and 
activates all the b 2 bonds between neighboring C(0)'s. The result is a small 
Y. The second construction stage takes b 2 copies of C(1) that fit together in 
a b times larger triangle C(2). The boundary between any two neighboring 
C(1) within C(2) is crossed by b potential bonds; one of them is picked at 
random and activated and the remaining b - 1 are decimated, yielding a tree. 
The kth stage takes b 2 statistically independent replicas of C ( k -  1) to make 
a b larger triangle C(k). The boundary between any two neighboring 
C ( k -  1) is crossed by b k-1 potential bonds; one of them is activated, and 
the other b k-1 - 1 are decimated. The final outcome is a "squig tree" that 
fills the plane, hence is dimensionality D = 2. 

Squig intervals. The direct (non-self-overlapping) path between two 
points in a squig tree is called a squig interval. By the term "interval from A 
to B," we denote a curve that does not self-intersect: it is a bicontinuous map 
of the straight interval [0, 1]. All the intervals containing A and B are 
curves, hence "connected," and they are "minimal." Connectedness means 
that any point P '  on a curve may be displaced continuously until it coincides 
with any other point P ' ,  and minimality means that removal of any portion 
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Fig. 1 

of an interval from A to B (not including either A or B) necessarily destroys 
connectedness. 

Now let me construct a squig interval without constructing a whole tree, 
via interpolation. Initially, we are given a triangle and the information that 
our curve crosses if from left to right between its upper sides. The first-order 
approximation, shown in Fig. 1, is an "elementary broken line" made of two 
segments meeting at the triangle's center (plus its bonds to the outside). Then 
we toss fair coins to determine which halves of the two upper sides are to be 
joined. The initial triangle is divided into equal fourths and we impose the 
condition that each side bounding a subtriangle can be crossed at most once. 
This implies that every triangle is crossed at most once. We are left with the 
four possibilities shown in Fig. 2a, b, c, and d, each having the probability 
1/4. In the second-order approximation, the number of elementary broken 
lines is either 1 or 3. Selected examples of third-order approximations are 
shown in Fig. 3. A broken line approximation to the squig interval is made 
of intervals that join successive the centers of successive triangles. After this 
broken line has been oriented from one end to the other, each of its triangles 
can be classified as being either left or right handed, according to whether 
the break that the line suffers at this triangle's center bears to the left or to 
the right. The resulting sequence of letter R and L determines the approx- 
imation fully. To build the next broken line approximation, it suffices to 
determine whether it will cross each of the intertriangle boundaries through 
its left or its right half. See also footnote 6, p. 520. 

Let us now bring in a useful "birth process" terminology. In the passage 
from one approximation to the next, one can say that each "mother triangle" 
"gives birth" to N(1) smaller "daughter triangles," where N ( 1 ) =  1 or 
N(1) = 3 with the probabilities of 1/4 and 3/4, hence ( N ( 1 ) ) =  2.5. If  the 

& 
Fig. 2 
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Fig. 3 

births occurring in different triangles were statistically independent, we 
would deal with a process, known to probabilists, called "simple" birth 
process. The number N(k) of sisters and cousins after k generations would 
satisfy ( N ( k ) ) = ( N ( 1 ) ) k = ( 2 . 5 )  k, and N(k) divided by (2.5) k would 
converge to a limit random variable. This suggests the similarity dimension 
D = log/2.5 = 1.3219. Actually, the hypothesis of independence of the births 
is invalid, nevertheless (see Section 1.8 or Ref. 7) the result is exact. By 
construction, the limit fractal squig does not self-intersect. It has also been 
shown (Ref. 9, p. 384) that, as intended, it does not self-contact either. 

1.4. SQUlG INTERVALS IN THE PLANE CONSTRUCTED ON A 
SQUARE LATTICE OF BASE b = 2. ALTERNATIVE FORMS OF THE 
PROCESS OF SEPARATION 

1.4.1. Squig Loops 

The procedure that yielded trees in Section 1.3.3 can be implemented in 
other lattices, with varying outcomes. In some cases (e.g., Section 1.5) it 
yields alternative squig trees. In other cases, it yields fractals containing 
rings or loops. 

Example: Squig loop structures on a square lattice of  base n = 2. The 
first construction stage takes four square lattice cells that fit into a twice 
larger square. It is clear that the four bonds between neighboring C(0)'s form 
a small ring, and each successive construction stage will add further rings. 

If one wants the procedure to yield trees and intervals, one needs an 
additional procedure, to be called "separation." This is a first complication. 
Further complication: even if each side can be crossed at most once, it is 
conceivable in the case of square lattices that a lattice cell be crossed twice. 
Section 1.4.2 will study a first form of separation, called "bond separation," 
which only allows a single transit, Section 1.4.3 will inject "site separation" 
which allows double transit, and Section 1.4.4 concerns other separations. 

822/36/5-6-2 



526 Mandelbrot 

1.4.2. Random Bond Separation, and Single-Transit Squig Trees and 
Intervals 

Squig trees. Go back to the elementary squig loops described above. 
Choose one of these bonds at random to be broken up or separated. This 
results in three activated bonds forming a small broken ring. The second 
construction stage fits four replicas of C(1) in a larger square C(2). Again, 
one of the four interfaces between the C(1), chosen at random, is separated 
to prevent a super-ring from forming. The nonseparated interfaces are each 
crossed by two bonds which are decimated except for one. At the kth 
construction stage each nonseparated interface is crossed by 2 k potential 
bonds, which are decimated, except for one. 

Squig intervals constrained to cross any cell in the pertiling once. To 
determine their structure and their dimensionality requires methods that are 
less direct than those used in Section 1.3.3. The reason is that the interval's 
transit through any given cell in the pertiling can occur either between 
neighboring sides (NS) or between opposite sides (OS). Examples of inter- 
polations (analogous to Fig. 2) are shown in Fig. 4. Altogether, the passage 
from one to the next stage of interpolation in a squig interval is characterized 
by a matrix that was used without name in Refs. 1 and 7, and has recently 
been labeled the "transfer matrix of a fractal" (TMF). ~~ Here, the TMF is a 
2 • 2 matrix. Averaging all the separator's configurations yields an expected 
TMF, which is 

(Ns) (os) 
(NS) 5/4 3/4 
(OS) 6/4 6/4 

To obtain the fractal dimensionality of a fractal whose TMF is a b • b 
matrix, one seeks the leading eigenvalue ~1, and one forms D----lOgb~ ~. 
Here, /]'1 = 2.4430 and b = 2, hence D = log 2 21 = 1.2886. 

Fig. 4 
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1.4.3. Random Site Separation, and Double-Transit Squig Intervals 

The alternative form of  separation we now investigate, "site separation," 
increases D,  from D = 1.2886 to nearly D = log z 3 ~ 1.5849. 

Comment. Nearly the same range will be encountered in Section 1.6.1. 
This may be a numerical coincidence. But this may also reveal a deeper 
reality: it may be that this is a "natural range" for fractal curves that do not 
self-intersect, but have approximations that nearly self-contact. 

To motivate site separation, we start with the interpolative construction 
of squig intervals, and take a closer look at the squig loops considered early 
in Section 1.4.1. The two nondecimated bonds that touch a given loop can 
attach either at different sites or at the same site. When interpolating a NS 
cell, they have the probability 1/16 of being attached at the same site, which 
is the end point of four bonds. Bond separation, as performed in 
Section 1.4.2, continues to be implementable, and it completely erases the 
loop. In all cases, each cell is transited once by our approximate squig, hence 
also by the limit squig. 

Now we change the rules, to allow a cell to be transited twice, say, from 
the top to the right then from the bottom to the left. Self-crossing or self- 
overlap remain prohibited, but we allow an approximate squig interval to 
self-contact. (The formal definition of a squig interval must be generalized, 
but the physicist is not worried.) Our list of cell types is thus extended to 
four possibilities: single transit between neighboring sides (NS), single transit 
between opposite sides (OS), double transit (DT) by the same interval, and 
perturbed transit (PT), which means single transit through a cell that is also 
being transited by a second unrelated squig interval. Starting with the 
configuration (NS), which allows for the situations where a loop is attached 
to two bonds, bond separation places a random diagonal "mirror" across 
this site: a self-contacting meander will be created with the probability s, and 
full loop in contact with an interval will be created with the probability 
1 - s. The quantity s will be called "seeding probability," because it "seeds" 
a (DT) configuration. 

How to further interpolate the (DT) configuration created by the self- 
contact of a meander? In listing the possible configurations of entry and exit, 
we use a label that indicates where the two transits enter and exit: right or 
left, top or bottom. For most irreducible configurations, the requirements of 
noncrossing and nonoverlap fully determine the two transit curves, hence 
require a determined special way of erasing unused bonds and separating 
sites where there is contact. For the configuration labeled LBRT, the only 
sensible procedure is to perform site separation: with the same probabilities 
s/2, the center loop is attributed to one short transit or the other, and with 
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the probability 1 -  s, the center loop is set loose. For the configuration 
labeled LTLB, bond separation imposes itself. 

The TMF is now found to be the 4 • 4 matrix 

(DT) (PT) (YS) (OS) 

(DT) (12 - 28)/16 (1 -- s)/32 (4 - 4s)/16 0 

(PT) 25/16 11/16 48/16 0 

(NS) 3/16 (14 - s)/16 (32 - 12s)/16 24/16 

(OS) 18/16 9/16 12/16 20/16 

For s = 1, one finds 4 1 =  2.96, hence D ~ 1.5656. For s = 0 ,  we fall 
back on D ~ 1.2886. For intermediate s, the D ranges between the above 
values. Past experience ~5) suggests that D is a near-linear function of the 
parameter s. 

The expected number of self-contacts "born" in one generation from an 
existing self-contacting configuration is < 1 on the average. According to a 
well-known chapter of probability theory, which was already used in 
Section 1.3.3, a population ruled by a birth process in which there is less 
than one offspring on the average will almost surely die off. The proofs in 
this theory do not apply here, because (as mentioned in Section 1.3.3) the 
births fail to be statistically independent. Nevertheless, the validity of it s 
conclusion seems a safe conjecture. This is important, because it implies that 
every self-contact will eventually be separated away. On the other hand, site 
separation in the (NS) configurations keeps seeding new self-contacts. The 
number of self-contacts, per unit of length of the broken line approximation, 
remains constant on the average. When physical limitations force us to stop 
the interpolation, we are left with a curve rich in self-contacts. But they are 
mostly very local, and do not  matter. In the limit squig interval the self- 
contacts can only occur between infinitesimally distant points. 

1.4.4. Nonrandom Push Out or Pull in Separation 

Suppose that one can interpret each squig interval as being a portion of 
a bigger loop that has been seeded at some earlier stage. The following 
separation processes can be defined: when a path meets a loop in a squig 
loop structure, it is instructed to bear toward the inside (or the outside) of 
the bigger loop. We still have some control over which paths are allowed to 
be considered. The choice concerns paths that create a double transit: they 
can be forbidden, allowed, or allowed with some prescribed probability. 
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1.5. SPATIAL SQUlG SHEETS AND SQUlG INTERVALS ON A 
CUBIC LATTICE 

Squing intervals have not one, but two, distinct topological 
generalizations in the space ~ 3  and E - 1  distinct generalizations in the 
space I~ e. The reason is that separation in the plane sets up intervals that 
cannot be crossed, but separation in l~ 3 may set up either intervals or 
squares that cannot be crossed. The nature of the separator determines 
whether the squig is a surface or is a curve. This topic is best discussed in 
terms of interpolation. 

1.5.1. Squig Sheets on a Cubic Lattice of Base b = 2 in the 
Three-Dimensional Space ~3 

To generalize the notion of squig interval into that of a squig sheet, we 
must go through another exercise in definition. Section 1.3.3 had defined 
"interval" as a curve that is a bicontinuous map of [0, 1 ], and is connected 
and minimal. Similarly, let us define a sheet as a bicontinuous map of the 
closed unit square. A sheet is a surface that is "contractible" and "minimal? '  
Contractibility means that any portion of this surface can be deformed 
continuously while remaining part of it, until it reduces to any prescribed 
point on it, and minimality means that removal of any portion (not inter- 
secting the curbe ~ that is the map of the boundary of our square) 
necessarily destroys contractibility. 

Recall furthermore that a squig interval can be interpreted as the limit 
either of a sequence of "ribbons" whose widths decrease to zero while detail 
is being added, or of a sequence of broken lines forming the ribbon's 
backbones. Similarly, a squig sheet can be interpreted as the limit ei ther of a 
sequence of "comforters" whose thickness decreases while detail is being 
added, or of a sequence of surfaces that form the comforter's backbone. 
These surfaces are made up of squares and can be called "sigma squares" or 
"a-squares." 

To implement squig sheets, I require their intersections by the faces of 
the cubes in the lattice to be squig intervals on a square lattice, as defined in 
Sections i.4.2, 1.4.3, or 1.4.4. One can imagine that a loop made o f M  squig 
intervals is drawn on the unit cube's surface according to either of the rules 
in Section 1.4, then is spanned by a sheet, according to either one of the 
separation rules described below. But of course the operations of drawing the 
loop on the cube's surface, and of spanning the loop are really carried out in 
parallel. 

To obtain a first approximation of our sheet by squares, we divide our 
cube of side one into eight subcubes of side 1/2. To each of the unit cube's 
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12 edges corresponds a square orthogonal to it at its midpoint; this square is 
one of the subinterfaces, i.e., of the interfaces between subcubes. The initial 
conditions determine which M edges of the unit cube will be crossed by the 
sheet. Under these conditions, one can approximate the sheet by M of the 
subinterfaces. 

The next construction stage begins by performing decimations. On each 
of the 12 edges which our approximate sheet intersects, decimation pinpoints 
a half-edge that will be crossed. Then one replaces each subinterface by a 
collection of sub 2 interfaces of side 1/4. There are 96 such sub 2 interfaces 
and the first task is to sort them into two bins. The first bin contains the 72 
sub / interfaces that touch the surface of our unit cube: each of its 12 edges is 
touched by two such sub 2 interfaces, and each of its six faces is touched by 
eight additional ones. The second bin contains the 24 remaining sub 2 
interfaces. They bound a cube of side 1/2, whose vertices are centers of eight 
subcubes in our lattice and which is the equivalent of the loop in the plane; it 
will be called the "balloon." The idea, then, is to first refine the trace of our 
sheet on each of the faces of the unit cube, from being formed by segments of 
length 1/2 to being formed of segments of length 1/4. Then, each sub z 
interface that includes one of the latter segments is included in the squig 
sheet's second approximation. In exceptional configurations, these interfaces 
may form a minimal contractible surface. But in general these interfaces add 
up to a "r im" broken by a hole whose boundary (a broken line) we shall call 
"belt." The belt is drawn on the surface of the balloon separating it into two 
"half-balloons." The sum of the rim and the punctured balloon is always a 
contractible surface but it is not a sheet. The idea of generalized separation is 
to combine the rim and one of the two half-balloons into a sheet. 

1.5.2. Pure Bond Separation. Does Not Generalize to Three Dimensions 

The spatial form of bond separation consists in puncturing the above 
cubic balloon in the center of one of its six faces, chosen at random. One 
removes the punctured face. Then one tests the four sides of this face. When 
a side does not  belong to the belt, the "middle" face beyond that side is 
removed. Lastly, but only if at least one of the "middle" faces has been 
removed, one must test the sixth face of the balloon (farthest from the 
puncture). When this farthest face touches one of the removed faces along a 
side that does not belong to the belt, the farthest face is removed. This 
terminates the first stage of the process. The idea is that the separator in 
space is made of M + 1 subedges of length 1/2, those segments being 
selected among the edges of the eight subcubes of the unit cubes in our 
lattice. Each of the first M separating segments is traced on a face of the unit 
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cube, and touches these faces' centers. The last separating segment radiates 
from the center of the unit cube. 

Unfortunately, the repetition of this process will eventually require an 
essential innovation. (This important fact was observed by Curtis 
McMullin.) Suppose that the rim intersects the surfaces of a lattice cube 
along a curve that transits only once by each of the six faces. The next stage 
of interpolation gives a positive probability to a configuration in which 
keeping either of the half-balloons will yield an approximate sheet that has 
either double points or double lines, and transits some subcubes twice. This 
last situation is not provided for by the rules of bond separation 
(Section 1.4.2), meaning that the configurations space of pure bond 
separation is not closed in three dimensions. 

1.5.3. Acceptable Separation Processes. The Various Squig Sheets' 
Dimensionalities and Potential Applications 

In order to have a closed configuration space, we must introduce loop 
separation rules that apply to double transits on the two-dimensional surface 
of the cubic cells, and balloon separation rules that apply to multiple transits 
in the three-dimensional cells. This can be done. For example, the push-out 
or pull-in methods of separation, in Section 1.4.4 generalize to sheets. Other 
examples have been examined. In each case, the TMF is huge. (See the 
Acknowledgment at the end of this paper.) It must be obtained by computer, 
and is not worth reprinting here. According to the degree of self-contact left 
in the approximations, we found values of D that range from 2.72 to 2.87. 

Thus far, the theory of squigs has enjoyed a string of lucky breaks in 
the quality of the simplest squig models of the intervals, the trees and the 
clusters. As often stated, for example in FGN, p. 227, these breaks may go 
beyond simple coincidences, and may express some profound aspects of 
space that had not been previously tapped. In any event, this lucky streak 
may well continue: it would seem that the lower bound of the squig sheets' D 
is in the range of 8/3, which is a magic number in the study of turbulence 
(FGN, Chapter 30). A detailed study of the different Ds must be postponed 
to a more leisurely occasion. 

1.5.4. Squig Intervals on a Cubic Lattice of Base b = 2 in Three 
Dimensional Space 

In interpolation, the first step is to divide the unit cube into eight 
subcubes of side 1/2 and join the subcubes' centers. This yields 36 potential 
bonds falling into two bins. The 24 bonds in the first bin fall into six bunches 
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of four bonds pointing out towards each of the six faces of the cube. These 
bonds are handled by decimation: of the four bonds in the interval's entry 
and exit faces, three are decimated and one is activated. The 12 potential 
bonds in the second bin form an elementary loop in space. The first step 
toward obtaining squig intervals is to separate this loop into a tree. This is 
achieved by preventing some of the square interfaces between subcubes from 
being crossed. Thus, the separators must be selected among the square 
interfaces. I find that one must separate five out of the 12 interfaces, but 
many configurations are unacceptable because they disconnect the loop. 
More generally, the configuration of the square separators must satisfy a 
number of constraints. 

The total number of allowable configurations being high, a computer 
program was necessary to list them, to evaluate the TMF matrix, and to 
obtain the dimensionality. (See the Acknowledgment at the end of the paper.) 

The leading eigenvalue was found to be 21 = 3.7248, which yields the 
fractal dimensionality of D = 1.897. The topic is far from exhausted. 

1.5.5. Squig Intervals on a Cubic Lattice of Base b > 2. Is It Possible for 
Knots to Occur? 

In cubic lattices with a value of b > 2, the squig constructions require 
multiple separators related by multiple constraints. My impression, but one 
that has not been implemented, is that one may arrange for knots to occur. 

1.6. NONSYMMETRIC  DECIMATION AND SEPARATION 

1.6.1. Two Nonsymmetric Forms of Decimation 

Let us return to the prototypical squig tree whose construction is 
recalled in Section 1.3.3. After four copies of C(1) fit together to form C(2), 
one of the two bonds between them is activated. As previously described, the 
activated bond is chosen at random, that is, with equal probabilities. Now we 
suppose that different probabilities p and 1 - p  are adopted. Two 
specifications will be described. Together, they yield squig intervals that span 
the range between a straight segment and the Sierpinski gasked. In all cases, 
one can show (like in Ref. 9, p. 384) that the asymptotic squigs do not self- 
contact. I have as yet no concrete application for the asymmetric cases 
p 4= 1/2. 

First specification. Start with a triangular lattice, orient one of the 
triangles arbitrarily, say, in the clockwise direction, and then orient the 
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remaining triangles in a consistent fashion: the three that touch the original 
triangle by a side become oriented counterclockwise, and so on. Then the 
probability p is attached to activation of those potential bonds that lie to the 
left in clockwise cells and to the right in counterclockwise cells. Intuitive 
renormalization suggests, and Peyri6re t7) proves, that the resulting squig 
intervals have the dimensionality D = l o g 2 [ 3 - 2 p ( 1 - p ) ] .  Symmetric 
decimation, p = 1/2, yields the familiar log 2 2.5 = 1.3219, a lower limit. 
Increasing asymmetry attributes increasing probability to large "eddies." 
Two maximally asymmetric decimations, p = 1 or p --- 0, yield the Sierpinski 
gaskets constructed as Koch curves (FGN, p. 142) so that points of 
asymptotic contact are not allowed to be crossed. For them, D is the familiar 
logz 3 = 1.5849, an upper limit here. 

Comment. The range from log 2 2.5 to log 2 3 is nearly identical to the 
range that was encountered and discussed in Section 1.4.3. 

Second specification. When a tree is viewed as a branching river 
network, there is a consistent way of attaching the labels "left" and "right" 
to each side of each branch. In this setting, the squig intervals have the 
dimensionality D = log213 - (p2 • (1 -- p)2)]. Its value lies between 1 and 
log2 2.5 ~ 1.3219. 

The distribution of crossing points and the Besieovitch 
measure. Construct a squig interval by interpolation on a triangular lattice 
of base b = 2, starting with a unit triangle denoted as ABC. Suppose that all 
that is known initially is that the side through which the interval enters this 
triangle is AB. Successive stages of construction restricts the entry point to 
portions of AB of length 2 -1 , 2 -2 , 2-3... When the construction is 
symmetric, p = 1/2, the position of the asymptotic entry point on AB is 
distributed uniformly. But in all the p 4:1/2 cases, the positions of the 
asymptotic entry point follows a variant of a basic fractal measure, which I 
call B measure, in honor of Besicovitch. It is described in FGN, pp. 377 and 
378 and in the Edinburgh paper, Section 3.2.1. 

1.6.2. Nonsymmetric Substitutes for Separation 

Suppose that the unseparated squig contains more than one interval 
from A to B. A variety of rules could be used as a substitute for separation. 
One may, at each stage of construction, decide that each time one reaches a 
fork, one shall systematically bear to the left. Alternatively, when one works 
on a triangular lattice, one can decide that when the (k - 1)th approximation 
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was bearing left, the loop in the kth approximation should be taken counter- 
clockwise. 

1.7. EXAMPLES OF SQUIGS CONSTRUCTED ON 
UNCONVENTIONAL LATTICES 

The tiling base b of a pertiling lattice is defined as the linear size of a 
supercell divided by that of a cell. In triangular or square tiling of the plane, 
or in cubic tilings of higher Euclidean spaces R e, the base is an integer b, 
and the number of cells in a supercell is b ~. The present section concerns 
several examples of more general lattices in which b E or more generally b D is 
an integer, but b itself need not be one. The first is an alternate rectangular 
lattice in the plane (E = 2), whose base is the square root of an arbitrary 
integer N >/2. The second is a lattice in the plane (E = 2), whose cells are 
bounded by fractal curves, and b = X/~. The third example is a lattice that is 
traced on a fractal surface of dimension D = log 2 6 > 2; here, b = 2 but the 
number of cells in a supercell is not 2 2 but 2 ~  6. These examples were 
selected to illustrate the basic operations concerning squigs, and they are 
fairly independent of each other. 

1.7.1. Pure Decimation: Squig Trees and Intervals on an Alternating 
Rectangular Lattice 

Let b = v/N, where N is an integer. The basic cell is a "generating 
rectangle" of length v/N and width 1. When N such rectangles are 
positioned horizontally and stacked on top of each other, they form a 
vertically positioned rectangle of length N and width xfN. Next, N such 
rectangles are positioned side to side; together, they form a horizontally 
positioned rectangle of length N x / ~  and width N. The same process 
continues, alternating between horizontal rectangular rows and vertical 
rectangular columns. 

Within each of the initial columns, there are at most N -  1 potential 
bonds; let them all be activated. Within each second stage rectangle, the 
bonds subdivide into N -  1 columns, each of which contains N potential 
bonds; let one bond be activated in each column, while the remaining N -  1 
bonds are "decimated." As the extrapolation continues, our process creates 
increasingly large trees, then binds them in rows or columns of N, etc... 
Asymptotically, one creates a plane-filling tree. 

Squig intervals. In the above squig tree, a squig interval can traverse a 
cell in either of three ways, to be denoted as (SS), (LL), and (SL), meaning 
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"short side to short side," etc. The squig interval's expected TMF takes the 
following form: 

(LL) (SS) (SL) 
(LL) (N-- 1)(N--2)/3N N (N-- I)/2 
(SS) 1/N 0 0 

(SL) 2(1 -- l /N)  0 1 

dimensionality is 
D ~ 1.2671, which 
When N ~  m, it is 
2 - 2/log 3 N. As it 
slowly. 

Again, the largest eigenvalue being denoted by 21, experience with other 
fractals, (6) and especially with squigs, (s) suggests that this squig interval's 

log21/logv/N. When N =  2, 21 ~ 1.5514, hence 
is in the ballpark of D ~ 4/3 though on the small side. 
easy to see that 21 ~ N/3, hence D ~ l o g ( N / 3 ) / l o g ~  
should, this D converges to 2, but it does so extremely 

Generalization to the space ~3. It uses tiles whose sides are in the 
ratios 1, N 1/3, and N 2/3. The squig interval's expected TMF is now a 6 • 6 
matrix; I have not tried to write is down. 

1.7.2. Pure Decimation: Squig Trees and Intervals on a Fractal Lattice of 
Base 

This lattice is most conveniently described by starting with inter- 
polation. The initiator is a unit square, and the generator is a lower case "h" 
whose four strokes are of equal length and make 90 ~ angles. After one 
iteration, one has a fat "plus" sign made up of five squares of side l/v@-: a 
central square and four squares stuck on the central square's sides. In the 
second iteration, each of these squares is replaced by five squares of side 
( i / , ~ )  2. Asymptotically, one obtains the "quartet flake," namely, a domain 
shaped like a fuzzy fat plus sign and bounded by the fractal "quartet curve" 
shown in FGN, p. 49 (where it is covered by a peculiar Peano hatching). In 
the process, each side of the initiator square is first replaced by part of the 
boundary of the plus sign, namely, a Z whose three strokes are equal and 
make 90 ~ angles; then by nine strokes, and asymptotically by one fourth of 
the fractal quartet curve. 

The quartet flake having then been defined, we can take it as a basic 
cell, and proceed with an extrapolative construction, while thinking of the 
basic cell as a square whose sides have been "decorated." In a supercell 
made of five cells, there is a bond between the central cell and each of the 
remaining four, making a thin plus sign. consider a (super) ~ cell made of five 
supercells; between two neighboring thin plus signs, there are three potential 
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bonds: two are decimated and one is activated. Next, we have nine potential 
bonds: eight are decimated and one is activated. The result is a plane-filling 
tree. 

Squig intervals in the above squig trees. The interval can cross a cell 
in either of two directions: between neighboring sides (NS), or between 
opposite sides (OS). Therefore, the expected TMF is now the following 2 • 2 
matrix: 

(NS) (OS) 
(NS) 15/9 16/9 
(OS) 8/9 11/9 

The largest real eigenvalue is 2 z =  (13 + ~ ) / 9 = 3 . 0 3 9 ,  hence D =  
log 2~/logv/5 = 1.381. 

1.7.3. Decimation and Separation: Squig Trees and Intervals on a 
Lattice Drawn on a Skew Fractal Surface 

The imbedding surface considered here is already described in FGN, 
p. 139, where it is called Koch pyramid (and its secrets are unveiled). It is 
best constructed by interpolation; it will be understood that in this 
description all the triangles are equilateral. To define the generator of a 
fractal surface in 3-space, start with a triangle of side 1, divide in into four 
subtriangles of side 2 -1, build upon the middle triangle a regular 
tetrahedron, and erase the middle subtriangle of the original triangle. The 
resulting generator replaces one triangle by N = 6 triangles of base b = 2; 
hence the surface is of dimensionality log2 6- -2 .5849 (=1 + the dimen- 
sionality of the Sierpinski gasket). 

Now put together six tiles of the above surface to make up a supertile. 
Joining the centers of the triangles that bound the six tiles yields a graph 
made of one multiconnected ring and three dangling bonds. Continued 
extrapolation yields a fractal cluster that fills the Koch pyramid. If one 
wishes to pare this cluster down to a tree, the most natural process is to 
separate each ring somewhere. 

Squig intervals in the above squig trees. While squares and rectangles 
can be traversed in three or two different ways (respectively), triangles can 
only be traversed in one way. Hence, the TMF reduces to a 1 • 1 matrix. 
Using the argument which the Edinburgh paper, Section 1.1.2 applied to 
triangular lattices of base b = 3, we find that the intervals in a randomly 
separated construction have the dimensionality D =1og2(14/4)= 1.8073. 
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Observe that this value is much higher than the dimensionality given by the 
Flory formula for self-avoiding walks, Ssn w = 2 -- (1/3)(4 - -  D e m b e d d i n g  ). 

Shortest and longest intervals. Now suppose that the rings are not 
separated, and consider the shortest paths between two points in such rings. 
It can be seen that their dimensionality is log2(13/4 ) = 17004. The longest 
intervals' dimensionality is log2(16/4 ) = 2. 

1.7.4. Decimation and Multiple Separations: Squig Trees and Intervals 
on a Modified Kagome Lattice Linked to Snowflake Fractals 

In the preceding example, a squig tree is contructed from a squig graph 
whose first stage includes a single ring. Therefore, a single separation 
suffices. In other examples, however, the first stage graph includes several 
rings. Multiple separations are then necessary and the novel fact is that they 
cannot be selected independently of each other. 

For example, let us begin with a kagom~ lattice (kagornd means basket 
in Japanese, hence takes a lower case initial). It is a mixture of hexagonal 
and triangular cells. Pick one of the hexagons as origin, and merge it with its 
six neighboring triangles to form a starred hexagon (Star of David), the first 
stage of the construction of a Koch snowflake. Do the same with the six next 
nearest neighbor hexagons, that is, the hexagons that lie just beyond the six 
that share a vertex with the original hexagon. Then repeat the same merging 
operation with each of the six next nearest neighbor hexagons. 

The result, to be called modified kagom~ lattice, is a mixture of starred 
and convex hexagons. In this lattice, a supercell is defined as a star, plus (a) 
the six hexagons that touch it by two sides, and (b) the six stars that touch it 
by one vertex. The supercell's shape is the second stage of the construction 
of the Koch snowflake. Between the centers of neighboring cells within a 
supercell, there are 18 potential bonds; when all are activated, the resulting 
graph includes many loops; in particular, it includes six minimal loops of six 
potential bonds, two of them going through the center of the middle star, and 
a loop made of six potential bonds that goes around the graph. It is easy to 
see that there are several ways of achieving full separation (hence, of 
obtaining a tree), by breaking six of the potential bonds. One possible 
implementation consists in breaking one bond in each of the minimal loops, 
with the following constraints: each broken bond is credited to only one 
loop, and breaking all six bonds that start at the origin is not allowed. 
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1.8. SQUIGS AS UNCONVENTIONAL GEOMETRIC BIRTH 
PROCESSES, M SYSTEMS. REFERENCE TO PEYRII~RE'S PROOF 
THAT RENORMALIZATION ARGUMENTS USING TMF ARE 
RIGOROUS 

Let us return to the simplest squig interval on a triangular lattice of 
base b = 2. Section 1.3.3 introduced birth processes and observed that the 
numbers of daughters born to neighboring mothers fail to be independent, 
hence the theory of "simple" birth processes fails to apply. An intuitive 
renormalization argument followed by numerical tests suggested to me that 
this should not matter. Peyri~re ~7~ proved this fact rigorously and placed it in 
the context of a very interesting general theory. Recall that a triangle is right 
(left) handed if the broken line approximation turns right (left) in this 
triangle. The geometrical birth process underlying squig intervals can be 
expressed by saying that the numbers and the "handedness" of each mother's 
progeny is determined by whether the mother is left or right handed, and 
whether the separations on both sides of this mother are to the left or to the 
right. As a result, the passage from one to the next consists in the following 
three steps: take a word of N letters, the alphabet being reduced to L and R; 
next add a random letter, either R or L, between any two neighboring letters, 
and also at both ends, thus obtaining a word of 2N + 1 letters, and finally 
apply to each sequence new-old-new letters the following curious rules of 
"genetics": 

L(L )L -~ L, 

R(R)R -~R, 

L(L )R -~ (RLL ), 

R(R )L ~ (LRR ), 

L(R )L -~ (RLR ), 

R(L)R -~ (LRL) 

L(R)R (RRL) 

R(L)L (LLR) 

Peyri6re (7) has generalized this pseudo-genetics into a broader notion of M 
system. (They generalize the "L systems" named after A. Lindenmeyer.) See 
also Ref. 9. 

ACKNOWLEDGEMENTS 

I am most grateful to two summer visitors, Paul N. Feldman and 
Benjamin Fisher, for writing the difficult computing programs that yielded 
the TMF matrices reported for the squig sheets in Section 1.5. Numerous 
conversations with Jacques Peyri~re, James A. Given, and Curtis McMullin 
have been of great help. 



Squig Sheets and Some Other Squig Fractal Constructions 539 

REFERENCES 

This is a list of items specifically mentioned in the text, and it makes no attempt at being 
a comprehensive bibliography. 

1. B. B. Mandelbrot, Comptes Rendus (Paris) 286A:933 (1978). 
2. B. B. Mandelbrot, The Fraetal Geometry of Nature (W. H. Freeman, New York, 1982). 
3. B. B. Mandelbrot, Proc. StatPhys 15 Conf. (Edinburgh 1983), J. Stat. Phys. 34:895 

(1984). 
4. B. B. Mandelbrot, La Recherche 9:1 (1978), Figs. 5 and 6. 
5. B. B. Mandelbrot and J. A. Given, Phys. Rev. Lett. 52:1853 (1984). 
6. B. B. Mandelbrot, in Kinetics of Aggretation and Gelation, F. Family, ed. (North- 

Holland, Amsterdam, 1984), p. 5. 
7. (a) J. Peyri~re, Comptes Rendus (Paris) 286A:937 (1978). (b) Ann. Inst. Fourier 31:187 

(1981). 
8. D. J. Klein and W. A. Seitz, Proe. Natl. Aead. Sci. 80:3125 (1983). 
9. J. Hawkes, J. London Math. Soc. 24(2):373 (1981). 

10. B. B. Mandelbrot, Y. Gefen, A. Aharony, and J. Peyri6re, J. Phys. A. (in press). 


